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Abstract

In telemedicine, diverse medical images transmitted between doctors and patients contain sensitive
personal information. Thus, there is an urgent need for reliable and efficient medical image encryption
to protect these medical images during transmission. In this paper, a simultaneous permutation and
diffusion framework (SPDF) is introduced for medical image encryption based on a new chaotic map.
Firstly, combining the Chebyshev map and the iterative chaotic map with infinite collapse (ICMIC),
we propose a one-dimensional chaotic system (1D-CICMIC) which exhibits higher ergodicity and
unpredictability compared to other 1D chaotic maps through comprehensive analyses. Secondly, in
order to enhance permutation effect, we modify traditional Josephus traversing with a dynamic
scrambling method where the scrambling scheme of the current pixel depends on the value of the
previous diffused pixel. Thirdly, we develop a simultaneous permutation and diffusion framework,
wherein the diffusion is embedded into the modified Josephus traversing to prevent attackers from
targeting the scrambling and diffusion phases separately. Finally, based on 1D-CICMIC and SPDF, an
encryption system is proposed. It adopts plaintext correlation in the diffusion operation, which strikes
abalance between ciphertext sensitivity and plaintext sensitivity, offering resistance against chosen-
plaintext attack (CPA), noise attack and data loss. Simulation results show that the proposed algorithm
has high encryption efficiency and can withstand various common attacks.

1. Introduction

The progression of telemedicine has facilitated the transmission of diverse images such as MRI, x-ray, and CT
between patients and doctors. However, the transmission of unencrypted information poses a substantial threat
to privacy. Traditional encryption methods such as the Advanced Encryption Standard (AES), Rivest Shamir
Adleman (RSA) algorithm, and Data Encryption Standard (DES), specifically designed for safeguarding textual
messages, encounter challenges when applied to the encryption of medical images. This is due to the intrinsic
features of medical images, particularly the extensive data volume [1]. Given these image’s distinctive features
and the high value of privacy, there is a pressing need for specialized image encryption methods tailored to
safeguard medical images.

Until now, numerous image encryption methods have been developed to safeguard medical images [1-5].
Among these, chaotic-based image encryption schemes have garnered increasing interest owing to the chaotic
system’s intrinsic randomness, sensitivity to initial values, and other exceptional characteristics. In 1998,
Fridrich [6] presented a new image encryption architecture, which employed the pseudo-random numbers
generated by the chaotic system for both scrambling and diffusion stage. In recent years, a plethora of encryption
algorithms have been proposed, which utilize a similar encryption framework [1-5, 7-26]. In these work, one or
multiple pseudo-random sequences generated by 1D or high-dimensional chaotic maps are needed for
scrambling or diffusion. However, most of the common 1D chaotic maps have a small chaotic range and lack

© 2024 IOP Publishing Ltd


https://doi.org/10.1088/1402-4896/ad3bf4
https://orcid.org/0000-0001-9636-499X
https://orcid.org/0000-0001-9636-499X
mailto:hlq@gdut.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad3bf4&domain=pdf&date_stamp=2024-04-18
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad3bf4&domain=pdf&date_stamp=2024-04-18

10P Publishing

Phys. Scr. 99 (2024) 055249 Zleetal

sufficiently complex dynamical behaviors. In [22], Pak et al proposed a new image encryption method based on a
new 1D chaotic map that combines classic chaotic maps. However, Wang et al discovered an algebraic weakness
in [22] and attacked its equivalent cryptographic method using chosen plaintext attack in [27]. To address the
limitations of 1D chaotic maps, scholars have proposed alternative approaches such as the 1D robust chaotic
maps [15, 28] and the 1D chaotic maps without fixed points [24].

For an encryption system, the strength of encryption is a vital factor. In certain encryption schemes, the
encryption process or key stream generation is independent of the original image which is defined as a non-
plaintext-related (NPR) cryptosystem. In [7], Kumar et al developed an algorithm that uses DNA addition and
circular shifting to encrypt RGB images. The method in [8] employs orthogonal Latin cubes to scramble a 3D bit
matrix and achieves resistance to the statistical analysis, benefiting from the fact that the Latin cube has uniform
histogram. However, NPR encryption schemes [7, 8] face the risk of being deciphered because of the weak
relationship between plaintext and encryption operation or key stream. For example, an analysis conducted by
Akhavan et al [29] showed that the encryption algorithm presented by Kumar et al [7] is being susceptible to
CPA, as images encrypted with the same key could be easily recovered with as few as two chosen plain images. To
counter CPA, plaintext-related (PR) encryption algorithms have been developed by scholars. In PR encryption
mechanisms, the key stream generation or scrambling and diffusion operations are impacted by the plaintext
information. For instance, in [10], the hash function SHA-256 is employed to generate plaintext-related internal
keys for both the scramble and diffusion phases. Chai et al [11] introduced an approach for increasing sensitivity
to plaintext by applying plaintext-related Latin-square-based block permutation, along with a diffusion
operation that relies on the plaintext. In spite of the introduction of plaintext-related encryption aimed at
improving plaintext sensitivity, several cryptanalysis have successfully attacked PR algorithms by using CPA
[2, 30]. This vulnerability arises from various factors, including traditional scrambling-diffusion structure that
can be broken separately. Some works [31-34] performed the scrambling and diffusion operation
simultaneously and inseparably to solve this problem. As an illustration, a novel mechanism [31] integrates
permutation and diffusion into one encryption stage to pursue high security.

In recent years, the Josephus traversing has been utilized in image encryption as a scrambling technique due
to its simple principle and and effectiveness. However, traditional Josephus traversing has two drawbacks. One is
the fixed step size, which most scholars [9, 13, 14] try to solve by using a dynamic step size. The dynamic step size
is determined by a pseudo-random sequence generated with a chaotic system. The other issue is that in each
iteration, the target element needs to be taking out from the sequence, and the position of all remaining elements
should be updating. As a consequence, this process leads to an extended scrambling time. Guan et al [9] utilized
an element swapping technique in lieu of removing an element to improve efficiency.

To address the above problems, we introduce a simultaneous permutation and diffusion framework (SPDF)
for medical image encryption. The main contributions of this paper are as follows: (1) We propose a new 1D-
Chebyshev-ICMIC map (1D-CICMIC) and comprehensive analyses show that the map has higher ergodicity
and unpredictability than existing 1D chaotic maps. (2) We improve the Josephus traversing by employing two
different scrambling schemes for each element for the purpose of increasing the permutation effect,
distinguishing it from the traditional method that relies on a single scheme for scrambling. (3) Unlike previous
algorithms that only use the Josephus traversing for scrambling, the proposed SPDF embeds diffusion operation
into the Josephus traversing and performs the scrambling and diffusion simultaneously. This prevents attackers
from targeting the scrambling and diffusion phases separately and enhances the security of the algorithm. (4)
The SPDF employs plaintext correlation for diffusion operations, which magnifies small variations in plaintext,
leading to high plaintext sensitivity and resistance to CPA.

In this article, section 2 provides an introduction to conventional Josephus traversing and section 3 presents
1D-CICMIC chaotic system. Pseudo-random sequence generation and the SPDF algorithm are presented in
section 4, followed by the decryption process in section 5. Section 6 assesses the security performance of the
proposed algorithm, and section 7 gives a conclusion.

2. Preliminaries

The classic Josephus Problem, which is a well-known problem in the field of mathematics and computer science,
involves removing elements from a circular queue according to a specific rule. Within the realm of image
encryption, it is commonly utilized to scramble the plaintext sequence. Typically, in Josephus traversing, a 2D
plaintext image is converted into a 1D vector, and elements are extracted by using a fixed interval step to generate
ascrambled vector. Equation (1) defines the process of Josephus traversing, where # is the length of the sequence
to be scrambled, 1 is the initial position, and step is the interval step.

2
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Figure 1. Conventional Josephus traversing process with step = 2.

Table 1. Tested maps.

Name Mathematical expressions Parameter settings State variables
. a

1D-CICMIC Xpi1 = sin (m) a € (0,00) xe(—1,1)

1D-ICMIC Xnp1 = sin (xl) ~ € (0,00) xe(—1,1)
sine Xpr1 = b X sin(mx,) b (0, ) XE(—00,00)

) _ cos((pxn+ D2+ 1 1 1

1-DECS Xpi1 = Tt 1+ D12 n €,(0,00) XE ( 5 ﬁ)

1D-Chebyshev Xp+1 = cos(k X arccos(x,)) ke(0, 00) xe(—1,1)

J(n, m, step) )]

The steps of Josephus traversing are as follows: firstly, starting from the m-th position of the 1D vector, we scan
the vector in a clockwise direction. Secondly, remove the step-th pixel from the queue and start a new scan from
the next pixel. Thirdly, repeat the previous step until all pixels have been removed from the queue. To prevent
the step from exceeding n, it will be calculated by equation (2).

step = mod (step, n) + 1 2

This process effectively scrambles the vector and generates a new sequence. For example, setn = 6,m =0,
step =2 and avectoris[1, 2, 3,4, 5, 6], the process is shown in figure 1. The new vector generated after
scramblingis [2,4, 6, 3, 1, 5].

3. The proposed new chaotic system

The classic ICMIC and Chebyshev map are defined as equation (3) and equation (4), respectively. However,
these maps are not sensitive enough to the initial values, and their chaotic ranges are narrow, which will be
analyzed later. In this section, based on the ICMIC map and Chebyshev map, we propose a new chaotic map
with a wide chaotic range named 1D-CICMIC map, defined by equation (5).

Xpp1= sin(l) 3)
Xn
Xpr1 = cos(k x arccos(x,)) 4)
. a
Tt = SIn(cos(a X arccos(xn))) ©)

where 7, kand a are the system parameters. To demonstrate the superiority of the proposed chaotic map, we will
analyze the chaotic behaviors of different maps which are illustrated in table 1.

3
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Figure 2. The Lyapunov exponent of 1D-CICMIC, 1-DFCS, 1D-ICMIC, Sine and 1D-Chebyshev map.

3.1. Lyapunov exponent test
The Lyapunov exponent test is an effective method to analyze whether a non-linear dynamic system is sensitive
to changes in initial conditions [35], which can be calculated using equation (6).

1 N—1
A= lim — 37 Inlf/Ge)| ©)

N—oo n=0

where nis an integer and f”(x,,) is the value of derivative of the mapping function at x,,. The Lyapunov diagram
of different maps is plotted in figure 2. One can see that when the control parameters of different 1D-chaotic
maps €(0, 10 000), the Lyapunov exponent of 1D-CICMIC is positive and larger than the ones of other
chaotic maps.

3.2. Bifurcation analysis

The bifurcation diagram can visually show a dynamical system’s long-term behavior under different control
parameter values. The bifurcation diagram of the 1D-CICMIC, 1D-Chebyshev, Sine map, 1D-ICMIC [36], and
1-DECS(novel one-dimensional chaotic system based on the fraction of cosine over sine) [21] are shown in
figure 3, which indicates that the 1D-CICMIC map features a larger chaotic region.

3.3. Sample entropy

The self-similarity of a time series generated by dynamical systems can be measured using Sample entropy (SE)
[37]. Alarger SE value indicates lesser regularity of the time series and higher complexity of the dynamical
system. The value of SE of the time series X can be implemented as equation (7) and equation (8).

Dy (1) = [X (), X(@ + 1),...X(31 + m — 1)] (7)
SE(m, r, n) = —log% (8)

Here, template vector D,,(7) defined in equation (7) with the size of 11 is set to be taken from time series, A
and B in equation (8) are the number vectors that satisfy d[X,,,  1(1), X, 1()] < rand d[X,,,(i), X,n(D] < 1
respectively. d[X(i), X(j)] denotes the Chebyshev distance between X(i) and X( j), and r is the given distance. In
our experiment, m and r are chosen as 2 and 0.2std, respectively. A comparative experiment of SE is given, and its
results are shown in figure 4(a). One can see that the time series produced by the proposed 1D-CICMIC has
better performance in SE analysis.
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3.4.0-1 test

The 0-1 testis a chaos indicator that estimates the rate of growth of a nonlinear dynamic system’s series [38]. And
the p(n) and s(n) can be defined as equation (9), where the stant ¢ € (0, 27) and ¢(n) is a 1D time series.

pn + 1) = p(n) + ¢(n)cos(cn)

s(n + 1) = s(n) + ¢(n)sin(cn) "=

=1,2,3,... 9

The time-averaged mean square displacement M(rn) and the asynchronous growth rate K can be calculated
by equation (10) and equation (11), respectively. Figure 4(b) shows that the Kis close to 1 which means the

system is in a chaotic state.
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Table 2. NIST test results of 1D-CICMIC.

Testindex P—value Result
Frequency (Monobit) Test 0.816537 PASS
Frequency Test within a Block 0.224912 PASS
Runs Test 0.383827 PASS
Longest Run of Ones in a Block Test 0.202268 PASS
Binary Matrix Rank Test 0.202268 PASS
Discrete Fourier Transform (Spectral) Test 0.350485 PASS
Non-overlapping Template Matching Test 0.541081 PASS
Overlapping Template Matching Test 0.883171 PASS
Maurers universal Statistical Test 0.595549 PASS
Linear Complexity Test 0.946308 PASS
Serial Test 0.719747 PASS
Approximate Entropy Test 0.013569 PASS
Cumulative Sums (Cusums) Test 0.967102 PASS
Random Excursions Test 0.503500 PASS
Random Excursions Variant Test 0.377877 PASS
N - , , .
M(n) = lim =) ([pG + n) — pD)* + [sG + n) — s@H), n=1273 (10)
N—oo N i=1
K= lim 28M0) (11)

n—oo logn

3.5. NIST SP 800-22 test

The National Institute of Standards and Technology (NIST) SP800-22 is an effective tool to test the randomness
of the output sequences of a chaotic system [38]. Firstly, a time series with 12,500,000 elements is generated by
1D-CICMIC map. Then, each element is mapped into 0-255. Finally, the integer part of each value in the
mapped sequence is converted to 8 bits to obtain a binary number of 1 megabyte in size. Table 2 shows that all
the p-values fall within the range (0.001, 1), which indicates that 1D-CICMIC can produce a random enough
sequence.

4. The proposed encryption scheme

4.1. Secret key formulation

The proposed scheme is designed with four secret keys, consisting of two system parameters a, and a,, as well as
two initial values y; and z; for the chaotic maps. These keys, a;, a,, ¥;, and z;, are respectively denoted as Ky, K5,
K3, and Kj. The ranges of keys are defined as follows: K; € (2,12),K; € (2,12), K5 € (0,1),and K € (0, 1).

4.2. Pseudo-random sequence generation
The detailed steps of pseudo-random sequence generation are as follows:

Step 1: Convert a plaintext image with dimensions M x Ninto a vector A withasizeof L=M x N.

Step 2: We set K; and K; as the control parameter and the initial value of the 1D-CICMIC chaotic system,
respectively, and then iterate it M times to obtain the pseudo-random vector Y. Similarly, we acquire the vector Z
with the length of N using K and K. The vectors Yand Z are shown in equation (12).

{Y: o v ¥ oyt (12)

Z = {Zl) 225 235" '7ZN}
Step 3: Obtain an M x N matrix X,p and transform it to the sequence X with alength of L by equation (13):

Xop(i, j) = floor(mod (Y (i) x Z(j) x 10°, 256)) (13)
X = reshape(Xap', [1, L]);

wherei=1,2,3---M,j=1,2,3--- N.
4.3.SPDF

In this section, we introduce the SPDF in detail. The encryption process is illustrated in figure 5, which consists
of two rounds of simultaneous permutation and diffusion.
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Figure 5. The proposed cryptosystem.

The detailed steps of SPDF are divided into two parts based on the processing order: backward and forward.
In the first stage, the operation proceeds from the element A(L) to A(1), and in the second stage, the order of the
operation is reversed.

Step 1: Diffuse the element A(L) using equation (14).

B(L) = mod(A(L) + X (1), 256) (14)

Step 2: For the remaining elements in vector A, their target positions #p are determined based on the value of
the previous diffused pixel B,,,.. Two target position vectors, tp1 and tp2, are generated using equation (15) and
equation (16).

tpl(i) = mod(X (i) + 1, 1) + 1 (15)
tp2(i) = mod (tp2(i + 1) + tpl(i), i) + 1 (16)

where iis the current position ranging from L — 1to 1. If B, is greater than 128, the element at the current
position is then exchanged with the element at #p1; otherwise, it is exchanged with the element at tp2.
Additionally, tp2(L) is 1.

Step 3: Diffuse A(i) using equation (17) and equation (18) with the element in X and previous diffused value
in ciphertext vector B.

B(i) = mod(B(i + 1) + A(i) + X(q1), 256) (17)
gl = p2(BG+ 1) + 1) + 1 (18)

where iis the current position ranging from L — 1to 1.

Step 4: Iterate Step 2 and 3 until all elements of the plaintext vector A have been processed, resulting in the
ciphertext vector B with a size of L.

Step 5: In the forward stage, diffuse the element A(1) using equation (19) with the element at position 1 of the
pseudo-random sequence X.

C(1) = mod(B(1) + X(1), 256) (19)

For the remaining elements in vector B, the exchange rule is similar to the backward stage. But the generation
of their target positions are different.
Step 6: Two target position vectors, tp3 and #p4, are generated using equation (20) and equation (21).

tp3(i) =mod(X(@) + 1, L —i+ 1) +i—1 (20)
tpa(i) = mod (tp4(i + 1) + tp3()), L —i+ 1) +i— 1 21
where iis the current position ranging from 2 to L. If B,,,.. is greater than 128, the element at the current position
is then exchanged with the element at tp3; otherwise, it is exchanged with the element at tp4 and tp4(1) is 1.

Step 7: Diffuse B(i) using equation (22) and equation (23) with the element in X and the previous diffused
value in ciphertext vector C.




10P Publishing

Phys. Scr. 99 (2024) 055249 ZLeetal
H @ 6 @ © 29)
94 | 3 | 2 | 40 | 14 100
56 6 90
(36) (58) (84)

H @ 6 &
omne
oann
npon
- [
[ T T

tp2
28 83
(28) (93)
wlofo o]
1] 3| 4] 4
tp4

|120|3|31|92|— |214|45|143|160|

Figure 6. An illustration of SPDF.
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(32)

93)

C(i) = mod(C(i — 1) + B(i) + X(q2), 256)
g2 = tp4(CGi — 1) + 1) + 1

where iis the current position ranging from 2 to L.

(22)
(23)

Step 8: Iterate Step 6 and 7 until all elements of the plaintext vector B have been processed, resulting in the

ciphertext vector Cwith asize of L.

It’s worth noting that when the length of the plaintext A is less than 256, the generation length of X, tp2 and

tp4 will extend to 258.

SPDF, with the parameter L = 4, is illustrated in figure 6. The pseudocode of the SPDF encryption algorithm

is presented in algorithm 1.

Algorithm 1. Encryption algorithm with SPDF.

Require: The plaintext vector A and its size L, the pseudo-random sequence X, four generated vectors tp1, tp2, tp3 and tp4.

Ensure: Encrypted sequence C

1: B(L) = mod(A(L) + X (1), 256)
2:fori=L1L—1: —1: 1do

3: op=A(>)

4: if B(i + 1) > =128 then
50 AG) = A(pl(i)

6 AWpl() = op

7:  else

8 A@) = A(tp2(i))

9 A@p2() = cp

10:  endif




10P Publishing

Phys. Scr. 99 (2024) 055249 ZLeetal

(Continued.)

11:  B(@) =mod(B(Gi + 1) + AG) + X(p2(B(i + 1) + 1) + 1), 256)
12: end for

13: C(1) = mod (B(1) + X (1), 256)
14:fori = 2: L do

15 ¢p = B(i)

16: ifC(i — 1) > =128 then

17: B(i) = B(1p3(i))

18:  B(tp3(i)) = cp

19:  else

20: B(i) = B(tpa(i))

21:  B(tp4(i)) = cp

22:  endif
23:  C(i) = mod(C(i — 1) + B(@i) + X(tp4(C(G — 1) + 1) + 1), 256)
24: end for

5. The decryption alogorithm

Referring to figure 5, the decryption process is the inverse process of encryption. Initially, four keys are used to
generate the pseudo-random sequences X. Then the encrypted image D is converted into a 1D vector C. After
performing the reverse process of SPDF, which is detailed in algorithm 2, the plaintext sequence A is produced.
Finally, the vector A is converted back into the original image.

Algorithm 2. Decryption algorithm of SPDF.

Require: The ciphertext vector Cand its size L, the pseudo-random sequence X, four generated vectors tp1, tp2, tp3 and tp4, two vectors
nodel and node2 from 1 and incrementing by 1 up to L.

Ensure:Plaintext sequence A.

1: B(nodel(1)) = mod (256*2 + C(1) — X (1), 256)

2:fori = 2: Ldo

3: cp = nodel (i)

4: ifC(i — 1) > =128 then

5:  nodel(i) = nodel(tp3(i))

6: nodel (tp3(i)) = cp

7: else

8: nodel (i) = nodel (tp4(i))

9: nodel (tp4(i)) = cp

10: endif

11: B(nodel(i)) = mod (256*2 + C(i) — C(i — 1) — X(tp4(C(i — 1) + 1) + 1), 256)
12: end for

13: A(node2(L)) = mod (256*2 + B(L) — X (1), 256)
14:fori=L — 1: —1: 1do

15: cp = node2 (i)

16: if B(i + 1) > =128 then

17:  node2(i) = node2(tpl(i))

18: node2(tpl(i)) = cp

19: else

20: node2 (i) = node2(tp2(i))

21: node2(tp2(i)) = cp

22: endif

23: A(node2(i)) = mod(256*2 + B(i) — B(i + 1) — X(tp2(B(i + 1) + 1) + 1), 256)
24: end for

6. Simulation results and security analyses

In this section, the simulation results and security analyses of the proposed encryption scheme are presented.
The simulations are conducted on a computer equipped with an AMD Ryzen 5 4600H CPU@ 3.00 GHz, 16.0 GB
of RAM, Windows 10 OS, MATLAB R2022b. The secret keys are selected arbitrarily as K; = 5, K, = 10, K3 = 0.5
and K = 0.7. The medical images utilized in the experimental process are sourced from the Pseudo-PHI-
DICOM-Database (cancerimagingarchive.net). Specifically, we select four CT images each with a size of 512512,
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Table 3. Key space between different algorithms.

Schemes Proposed [9] [23] [25] [20]

Key space size 10°® 10°! 10% 10”2 10°

from distinct body regions. These CT images are respectively labeled as ‘001, ‘002’, ‘003’ and ‘004’ to facilitate
clear identification in subsequent analyses.

6.1. Security key space

For an encryption algorithm with high security, its key space should be larger than 2'%°. In the proposed
cryptosystem, four secret keys are utilized, each within the range of K; € (2,12),K; € (2,12), K5 € (0, 1), and
K, € (0, 1), with a computational precision of 10'*. As a result, the total key space is approximately

10" x 10" x 10" x 10" &~ 2'%2, which is significantly larger than 2'%. This ensures a great defense against all
forms of brute-force attacks. Table 3 illustrates the comparison of key spaces between our algorithm and other
encryption methods, and our method exhibits a large key space.

6.2. Histogram analysis

An effective encryption system should conceal the pixel distribution characteristics of the original image to
prevent some attacks using statistical analysis. Figure 7 illustrates the histograms of both the plain and encrypted
images. As shown in figure 7, the histogram of the cipher image is uniform, indicating its better performance in
resisting statistical attack.

6.3. Correlation analysis

Anideal encrypted image should display a weak correlation between the adjacent pixels to prevent attackers
from exploiting the correlations for attacking. Correlation analysis serves as a commonly used technique to
quantify the correlation in different directions, and the correlation coefficient is defined as follows:

P cov(x, ¥) 24)
YD&) x D)
N
cov(x, y) = %Z(x,- — E@)(; — E() 25)
i=1

where x and y are the pixel values of adjacent pixels and N is the total number of the image pixels. E(x) and E(y)
are the expected values of x and y, respectively. D(x) and D(y) are the variances of x and y, respectively. Tables 4
and 5 present the correlation coefficient results of our algorithm and other algorithms, and our algorithm
demonstrates alower average correlation coefficient compared to other techniques. Also, the correlation plots of
the 001 and 002 images, along with their corresponding cipher images, are presented in figure 8. The
consequences of correlation analyses indicate that the strong correlation in the plain images is significantly
weakened, approaching negligible correlation in the encrypted images.

6.4. Secret key sensitivity and plaintext sensitivity analysis

Secret key sensitivity and plaintext sensitivity analysis are essential parts of evaluating the security of image
encryption algorithms. The sensitivity analysis aims to assess the impact of small changes in the secret key or
plaintext on the cipher image. One common method to test sensitivity is Number of Pixel Change Rate (NPCR)
and Unified Average Change Intensity (UACI). NPCR and UACI are defined as follows:

M N

i=1j=1

1 L 1CIG, ) — €20, ) 20
UACI = ——— S % 2b) 2P 100%
M x N/=Z, 255
0, if Cl1(i,j) = C2(i,j .
where C1, C2 are two cipher-images and D (i, j) = {1 ;}[Cl((; ]J)) . C2((; ]],)).MandNare the height and

the width of the image, respectively.

Table 6 illustrates the key sensitivity results in the encryption process using the NPCR and UACI indicators.
Meanwhile, figure 9 depicts the key sensitivity results in the decryption process. As observed in figure 9, the
encrypted images decrypted by keys with slightly changed bear no resemblance to the original images,
highlighting a high key sensitivity during decryption. Additionally, table 7 presents the results of the plaintext

10
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(a) (r)

Figure 7. Simulation results. (a)—(d) original images; (e)—(h) the histograms of the original images; (i)—(1) the cipher images of (a)-(d),
respectively; (m)—(p) the histograms of (i)—(l), respectively; (q)—(t) the decrypted images of (i)—(1), respectively.

Table 4. Correlation coefficients of original images and encrypted images.

Original image Cipher image
Image
Vertical Horizontal Diagonal Vertical Horizontal Diagonal
001 0.9744 0.9932 0.9702 —0.0014 —0.0030 0.0036
002 0.9955 0.9981 0.9538 —0.0001 0.0033 0.0009
003 0.9956 0.9937 0.9926 0.0013 0.0010 0.0043
004 0.9768 0.9758 0.9650 0.0004 0.0025 —0.0011
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Figure 8. Simulation results. (a), (e) , (i) are the correlation plots of the original image of 001; (b), (f) , (j) are the correlation plots of the
encrypted image of 001; (c), (g) , (k) are the correlation plots of the original image of 002 ; (d) , (h) , (1) are the correlation plots of the
encrypted image of 002.

Table 5. Correlation coefficients of encrypted image 001 obtained by different

algorithms.

Direction Proposed [9] [23] [25] [20]
Vertical —0.0014 0.0008 0.0001 0.0054 0.0091
Horizontal 0.0030 0.0055 0.0037 0.0022 0.0032
Diagonal 0.0036 —0.0036 0.0087 —0.0069 —0.0024
Average 0.0026 0.0033 0.0041 0.0048 0.0049

sensitivity of different algorithms. Our algorithm’s results are closely aligned with the theoretical values of NPCR
and UACI, indicating a high plaintext sensitivity.

6.5. Information entropy analysis

Information entropy H(m) of an image reflects the randomness of its pixel values, and a higher entropy value

indicates a more secure encryption.

256

H(m) = p(m;)log

i=1

p(m

1

)

27)
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(a) (b) () (d)

Figure 9. Simulation results. (a) decrypted image with the key (K; + 10~ 14 Ky, K3, Ky); (b) decrypted image with the key (K,
K, + 107", K3, Ky); (c) decrypted image with the key (K, K5, K5 4+ 10, Ky); (d) decrypted image with the key (K3, Ko, K,
Ky +1071),

Table 6. Key sensitivity analysis results of the NPCR and UACI indicators in encryption

pl’OCCSS.

Image Index K, 4107 K, +107" K+ 1071 Ky+107"

001 NPCR 99.6094 99.6102 99.6114 99.6086
UACI 33.4627 33.4698 33.4592 33.4609

002 NPCR 99.6083 99.6098 99.6091 99.6106
UACI 33.4686 33.4601 33.4698 33.4638

003 NPCR 99.6057 99.6090 99.6115 99.6095
UACI 33.4623 33.4552 33.4585 33.4702

004 NPCR 99.6075 99.6098 99.6101 99.6106
UACI 33.4616 33.4620 33.4568 33.4679

Table 7. Plaintext sensitivity analysis results of the NPCR and UACI

indicators.

Image Size NPCR(99.6094) UACI(33.4635)
001 512 x 512 99.5789 33.4695
002 512 x 512 99.5795 33.4618
003 512 x 512 99.5826 33.4782
004 512 x 512 99.5740 33.4672
001 256 x 256 99.5385 33.4248
002 256 x 256 99.5467 33.4334
001in[9] 512 x 512 99.6194 33.4656
001 in[23] 512 x 512 99.7393 33.4064
001 in [25] 512 x 512 99.6293 33.5078
001in[20] 512 x 512 99.6014 33.4771
001in[9] 256 x 256 99.6293 33.4356
001in[23] 256 x 256 99.7504 33.4135
001 in[25] 256 x 256 99.6470 33.4824
001 in [20] 256 x 256 99.5813 33.4827

In equation (27), m(i) represents the probability of different gray-level values. For an encrypted image with
256 gray levels, the theoretical value of H(m) is expected to be 8. Table 8 presents the information entropy results
of different plain images and the cipher images encrypted with the proposed scheme and other algorithms. The
information entropy of the images encrypted by our proposed scheme closely approaches the theoretical value of
8, indicating the cryptosystem is resistant to entropy attack.

6.6. Chosen-plaintext attack analysis

Chosen-plaintext attack (CPA) is a common method used by attackers in cryptanalysis. In this method, attackers
can obtain any plaintexts and its corresponding ciphertexts. They deliberately choose or craft particular
plaintexts, such as images entirely in black or white, in an attempt to analyze the relationship between the
plaintexts and ciphertexts or deduce the secret key. In SPDF, the target positions of pixels in permutation stage
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(e) (f) (g) (h)

Figure 10. Simulation results of special images. (a) P1; (b) encrypted image of (a); (c) P2; (d) encrypted image of (c); (e) P3; (f) encrypted
image of (e); (g) P4; (h) encrypted image of (g).

Table 8. Information entropy analysis results.

Image Plain image Cipher image
001 3.2696 7.9992
002 5.8698 7.9993
003 7.2993 7.9993
004 3.6129 7.9992
001in[9] 3.2696 7.9992
0011in[23] 3.2696 7.9991
0011in[25] 3.2696 7.9993
0011in [20] 3.2696 7.9995

Table 9. The NPCR and UACI results of special images.

Image NPCR(99.6094) UACI(33.4635)
Encrypted image of P1 99.5922 33.4529
Encrypted image of P2 99.5876 33.4639
Encrypted image of P3 99.5944 33.4641
Encrypted image of P4 99.6073 33.4646

and diffusion results relies on the previous diffused pixel, plaintext vector and the chaotic sequence.
Consequently, even a minor alteration in the plaintext will exert a substantial influence on the encryption result.
This feature makes the proposed encryption method difficult for attackers to use specific plaintexts to extract
useful information.

Four particular images are designed for this trial, labeled as P1, P2, P3 and P4 with the same size of
512 x 512.P1and P2 represent the images entirely in black and white, respectively. P3 is an almost all-black
image, in which only one pixel value of 1 in its center location (256,256), and the other pixel values are 0.
Similarly, P4 is an almost all-white image with only one pixel value of 0 in center location. The encrypted images
are depicted in figure 10, and their corresponding NPCR and UACI results are presented in table 9. The
experimental results indicate that the encrypted images of the specific images do not reveal any valuable
information for analysis to resist CPA.
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(d)

Figure 11. Results of noise resistance: (a) the encrypted image 003 contaminated by salt and pepper noise 0.05 density; (b) the
encrypted image 003 contaminated by salt and pepper noise 0.1 density; (c)—(d) the decrypted images of (a)—(b) respectively.

6.7. Noise attack and data loss analysis
Noise attack and data loss are well-known concerns during the transmission of cipher data across networks. To
measure the robustness of our proposed encryption algorithm against these challenges, we select image 003 with
asize of 512 x 512.In the noise attack trial, the ciphertext images are polluted by salt-and-pepper noise with a
noise intensity level of 0.05 and 0.1, respectively. The resulting noisy images and decrypted images are shown in
figure 11. In the dataloss trial, four cipher images are intentionally obscured with different degrees and regions,
and the decrypted images are depicted in figure 12.

Furthermore, noise attack and data loss analysis of the cryptosystem can be quantified by peak-signal-to-
noise (PSNR), structural similarity (SSIM) and 2D correlation coefficients (CC), and their mathematical
representations are provided in equation (28), equation (29), and equation (30), respectively.

255 x 255

PSNR = 10lg (28)
M N (AG ) — BG, )

SSIM (A, B) — Z(ZMAlZLB + Cl)(ZZO'AB —|-2C2) 29)
(uy + p+ Q)oa + o+ Co)

co— YL AG ) — 1) B, ) — pp) 0

JELSY 4G D) — 1)) (SESABG D) — 1))

where A is the plain-image and B is the cipher-image, M and N are the size of A. p14 and pp are the mean values of
Aand B, respectively. o is the variance of A, 0% is the variance of Band ¢ 4 is the covariance of A and B. C, and
C, are small constants. Table 10 presents the PSNR, SSIM and CC analysis results between different algorithms.
From figures 10, 12 and table 10, most of the vital information in the original images can still retain from the
decrypted images. It demonstrates that the encryption system has better recovery capability for the polluted
information and resists noise attacks and data loss effectively.

6.8. Encryption time analysis

An excellent cryptosystem should have low computational complexity and short processing time. The
encryption speed simulation of our scheme and other algorithms is performed in the same environment. The
simulation results of encryption speed are shown in table 11. Notably, for our proposed algorithm, the time
consumption for encrypting the image 001 with a size 0of 512 x 512 is 0.0612 s, which is significantly lower than
the ones of other algorithms in table 12.
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Figure 12. Simulation results of data loss: (a)—(d) are the encrypted images 003 with different degrees of data loss ; (e)—(h) are the
corresponding decrypted images respectively.

Table 10. Noise attack and data loss analysis using PSNR, SSIM and CCindicator.

Noise attacks or data loss Type Proposed [23] [25] [91 [20]
Salt and pepper noise(0.05) PSNR 15.0253 12.8016 14.7574 19.8983 16.0863
Salt and pepper noise(0.05) SSIM 0.0308 0.0264 0.0289 0.2099 0.0300
Saltand pepper noise(0.05) cC 0.6277 0.3898 0.5277 0.6188 0.6918
Salt and pepper noise(0.1) PSNR 13.6476 11.5770 13.4095 17.0824 13.5180
Saltand pepper noise(0.1) SSIM 0.0210 0.0152 0.0122 0.1035 0.0189
Saltand pepper noise(0.1) cC 0.4864 0.3321 0.4353 0.5452 0.4776
Dataloss(1:50,1:512) PSNR 14.0441 12.0949 12.7425 13.1952 7.9183
Dataloss(1:50,1:512) SSIM 0.1790 0.0177 0.1046 0.1156 0.0001
Dataloss(1:50,1:512) cC 0.7938 0.3833 0.5010 0.6495 0.0154
Dataloss(1:512,420:512) PSNR 13.9627 10.6747 13.8106 13.4483 13.4777
Dataloss(1:512,420:512) SSIM 0.1752 0.0062 0.0958 0.0520 0.1533
Dataloss(1:512,420:512) cC 0.7143 0.2379 0.5745 0.6319 0.7319
Dataloss(40:210,40:210) PSNR 14.1047 12.1108 13.9063 9.0518 15.7865
Dataloss(40:210,40:210) SSIM 0.1835 0.0215 0.1236 0.0000 0.1494
Dataloss(40:210,40:210) cC 0.7714 0.3981 0.7540 0.0014 0.8375
Dataloss(460:512,1:512) PSNR 14.1560 12.0562 12.2368 13.8779 13.7664
Dataloss(460:512,1:512) SSIM 0.1692 0.0228 0.1065 0.1104 0.1316
Dataloss(460:512,1:512) cC 0.8348 0.3657 0.6311 0.7378 0.7218
Table 11. Encryption time (seconds).
Image 001 002 003 004
Time 0.0612 0.0625 0.0640 0.0636
Table 12. The comparison of encryption time (seconds).
Image Proposed [9] [23] [25] [20]
001 0.0612 0.1744 0.3735 0.2438 2.6365
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7. Conclusion

In this paper, anew 1D chaotic map 1D-CICMIC is presented to possess better ergodicity and unpredictability.
Then, we improve the traditional Josephus traversing by a dynamic scrambling method, aiming to enhance the
permutation effect. What’s more, we introduce a simultaneous permutation and diffusion framework called
SPDF to improve the security of the conventional scrambling-diffusion structure. Finally, based on the 1D-
CICMIC and SPDF, we develop a medical image encryption system that adopts the plaintext correlation in the
diffusion phases to strengthen the plaintext sensitivity. Extensive experiments have been conducted to evaluate
the proposed encryption scheme, demonstrating its high security and high computational efficiency in resisting
various attacks. Despite the notable performance in most security experiments, the robustness of the proposed
scheme falls short, particularly in the face of the noise attack. Therefore, future work will focus on enhancing the
robustness of the encryption system and exploring its potential application in other areas such as the video
encryption in telemedicine.
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